
SGK GOVERNMENT DEGREE COLLEGE

VINUKONDA, PALNADU DISTRICT

Report on Remedial Coaching

for the Course Programming in C

Academic Year 2021-22

CONDUCTED BY

DEPARTMENT OF COMPUTER SCIENCE

The remedial coaching program for "Programming in C" was designed to cater to the specific

needs of slow learners who scored less than 15 internal marks. Out of the 38 students enrolled, 4

were identified as slow learners. After the coaching, 2 out of the 4 slow learners showed

improvement, achieving a total of more than 40 marks.

 The following is the Classification of students into Slow Learners, Medium Learners and

Advanced Learners.

S.No REGD.NO
NAME OF THE

STUDENT
Internal

Marks

EXTERNAL

MARKS Total Learner Classification
1 Y213099048 BAILADUGU TARAKA

ARJUN
19 31 50

Medium Learner
2 Y213099049 BANKA GURAVAMMA 23 40 63

Advanced Learner
3 Y213099050 CHANGALA SAI VENKATA

GANESH

16 30 46
Medium Learner

4 Y213099051 DASARI RATNA KUMARI 19 8 27
Medium Learner

5 Y213099052 GOPU VENKATESH 23 33 56
Advanced Learner

6 Y213099053 JEEDIMALLA BHANU

PRASAD

22 49 71
Advanced Learner

7 Y213099054 KAKANI BRAHMA NAIDU 10 6 16
Slow Learner

8 Y213099055 KANCHARLA GAYATHRI 23 35 58
Advanced Learner

9 Y213099056 KISTAM CHANDRA SEKHAR 13 0 13
Slow Learner

10 Y213099057 KOTA VENKATA LAKSHMI

PADMAVATHI

23 11 34

Advanced Learner
11 Y213099058 MALAPATI KRUPARAJU 20 47 67

Advanced Learner
12 Y213099059 MANNEPALLI VENKATESH 19 36 55

Medium Learner
13 Y213099060 MUTUKURI KIRAN KUMAR 15 45 60

Medium Learner
14 Y213099061 NAMBURI PRADEEP 10 A A

Slow Learner
15 Y213099062 ORSU GOPI 16 6 22

Medium Learner
16 Y213099063 PADARA VENKAT 19 4 23

Medium Learner
17 Y213099064 PALADUGU MAHESWARI 22 49 71

Advanced Learner
18 Y213099065 PALLEPOGU RAKESH 16 10 26

Medium Learner
19 Y213099066 PASUMARTHI

RAHIMUNNISA

23 41 64
Advanced Learner

20 Y213099067 PEDDEETI DURGA PRASAD 19 2 21
Medium Learner

21 Y213099068 SETTI NAGALAKSHMAIAH 17 5 22
Medium Learner

22 Y213099069 SHAIK RAAFIYA 23 35 58
Advanced Learner

23 Y213099070 SHAIK ZAKIRA ROSHAN 24 43 67
Advanced Learner

24 Y213099071 SHIAK IMRAN BASHA 22 39 61
Advanced Learner

25 GG VELPULA AKSHAYA BABU 19 4 23
Medium Learner

26 Y213099073 YADLAPALLI VASU 17 54 71
Medium Learner

27 Y213099074 YESUPOGU MOUNIKA 10 11 21
Slow Learner

28 Y213099075 AMRUTHAPUDI BHASKAR

RAO

23 50 73
Advanced Learner

29 Y213099076 BANDARU

VEERANJANEYULU

23 20 43
Advanced Learner

30 Y213099077 BHAVANASI BHARATHI 16 43 59
Medium Learner

31 Y213099078 IRIGI DEVAKUMARI 23 48 71
Advanced Learner

32 Y213099079 KAMBHAMPATI VEERA

BRAHMA CHARI

16 32 48

Medium Learner
33 Y213099080 KOTWAL

VAHEEDAREHAMAN
18 30 48

Medium Learner
34 Y213099081 PILLIKUDUPULA

SRINIVASA GOPI

10 30 40
Slow Learner

35 Y213099082 SHAIK JANBEE 19 40 59
Medium Learner

36 Y213099083 SOMAVARAPU YESHAYA 24 62 86
Advanced Learner

37 Y213099084 SRIKAKULAM

NAGENDRACHARI

21 64 85
Advanced Learner

38 Y213099085 VALLEM VENKATESWARLU 10 30 40
Slow Learner

List of topics taught during remedial coaching:

S.No Name of the Topic Brief Synopsis of the Topic

1 Introduction to C C is a widely-used, versatile

programming language

renowned for its efficiency

and direct memory access. It

was developed by Dennis

Ritchie at Bell Labs in the

early 1970s. C serves as a

foundational language for

many others, making it a

crucial starting point for

programmers. It provides

low-level memory

manipulation and access,

making it powerful yet

challenging, especially for

beginners.

2 Variables and Data

Types

Variables are storage

locations for holding data

during program execution. In

C, understanding various

data types (integers, floating-

point numbers, characters,

etc.) and their characteristics

is essential. Variables and

data types are fundamental

concepts forming the basis

of any C program.

3 Control Flow and

Loops

Control flow structures

enable the program to make

decisions and execute

specific code blocks

accordingly. Loops,

including for, while, and do-

while, facilitate repetitive

execution, allowing efficient

program flow and reducing

redundancy in code.

4 Functions Functions are blocks of

organized and reusable code

aimed at performing specific

tasks. They enhance code

modularity, readability, and

reusability, crucial for

managing complex

programs.

5 Arrays Arrays in C are collections

of elements, all of the same

data type, accessed using an

index. They provide an

efficient way to store and

manipulate multiple values

under a single variable name.

6 Pointers Pointers are variables that

store memory addresses.

Understanding pointers is

critical for dynamic memory

allocation, efficient array

manipulation, and

interfacing with hardware.

7 Structures and Unions Structures allow combining

different data types into a

single entity, while unions

enable storing different data

types in the same memory

location. Both are essential

for organizing and handling

complex data.

8 File Input/Output File I/O functions in C

enable reading from and

writing to files, a

fundamental aspect for data

persistence and management.

9 Dynamic Memory

Allocation/Deallocation

Dynamic memory allocation

allows a program to request

memory during runtime. It's

a crucial concept for

managing memory

effectively, especially when

the amount of memory

required is unknown or

varying. Deallocation is

equally important to release

memory and prevent

memory leaks.

10 Preprocessor Directives

and Macros

Preprocessor directives

provide instructions to the

compiler before actual

compilation. Macros are a

way to define constants or

short functions, enhancing

code maintainability and

readability.

Beneficiary Status of Slow Learners:

S.N

o

REGD.

NO

NAME OF

THE

STUDENT

Internal

Marks

EXTERNAL

MARKS Total

Learner

Classification

Outcome of Remedial

Coacing

1
Y213099

054

KAKANI
BRAHMA

NAIDU

10 6 16 Slow Learner Not Benefitted

2
Y213099

074
YESUPOGU
MOUNIKA

10 11 21 Slow Learner Not Benefitted

3
Y213099

081

PILLIKUDUPU

LA SRINIVASA

GOPI

10 30 40 Slow Learner Benefitted

4
Y213099

085

VALLEM

VENKATESWA

RLU

10 30 40 Slow Learner Benefitted

Overview of Topics planned for Remedial Coaching

1. Introduction to Programming in C

Description: C programming is the bedrock of modern computing and serves as a foundational language

for both system-level and application-level programming. Originating at Bell Laboratories in the early

1970s by Dennis Ritchie, C has stood the test of time and is widely utilized due to its versatility and

efficiency.

In C, a program comprises functions, which manipulate data and perform specific tasks. Functions are

integral to C programming, enabling modularity, code reusability, and a structured approach to problem-

solving. These functions can return values and can be invoked within the program, enhancing the

program's clarity and efficiency.

Example:

#include <stdio.h>

int main() {

 printf("Hello, World!");

 return 0;

}

In this example, we use the printf function to display "Hello, World!" on the standard output. The main

function, as the entry point of a C program, orchestrates the program's execution.

2. Variables and Data Types

Description: Variables in C are fundamental units that store data temporarily during program execution.

Every variable has a specific data type, such as int (integer), char (character), float (floating-point), and

double (double-precision floating-point), which dictates the kind of value it can hold.

Understanding variables and data types is essential for effective memory usage and ensuring program

correctness. Proper usage ensures that the right amount of memory is allocated for different types of data,

preventing issues like overflow or data loss.

Example:

#include <stdio.h>

int main() {

 int age = 30;

 char gender = 'M';

 float height = 5.9;

 printf("Age: %d\n", age);

 printf("Gender: %c\n", gender);

 printf("Height: %.2f\n", height);

 return 0;

}In this example, we declare variables of different data types (int, char, float) and display their values

using the printf function.

3. Control Structures: Loops and Conditionals

Description: Control structures in C govern the flow of execution within a program. They include

conditionals (if-else) and loops (for, while, do-while). Conditionals allow branching based on certain

conditions, while loops enable repetitive execution of a block of code.

Understanding control structures is vital for creating efficient and adaptable programs capable of handling

various scenarios and processing data accordingly.

Example:

#include <stdio.h>

int main() {

 int i;

 for(i = 1; i <= 10; i++) {

 printf("%d ", i);

 }

 if(i == 11) {

 printf("\nLoop executed successfully.\n");

 } else {

 printf("\nLoop failed.\n");

 }

 return 0;

}

In this example, we use a for loop to print numbers from 1 to 10 and then use an if-else statement to

check if the loop executed successfully.

4. Functions and Modularity

Description: Functions in C are blocks of code that can be reused and called within a program. They

enhance modularity, making it easier to manage and comprehend the codebase. Functions accept inputs

(parameters), perform specific tasks, and may return a value.

Understanding functions and their usage is fundamental for writing efficient, maintainable, and modular

code. Functions allow for code reuse and aid in organizing the program's logic into manageable units.

Example:

#include <stdio.h>

int add(int a, int b) {

 return a + b;

}

int main() {

 int num1 = 10, num2 = 20;

 int sum = add(num1, num2);

 printf("Sum: %d", sum);

 return 0;

}

In this example, we define a function add that calculates the sum of two integers. The main function calls

this function to obtain the sum of num1 and num2.

5. Arrays and Strings

Description: Arrays in C allow for the storage of multiple values of the same data type under a single

name. Arrays play a crucial role in handling collections of data efficiently. Strings, essentially, are arrays

of characters.

Understanding arrays and strings is essential for effective data handling and manipulation in C programs.

Arrays provide a structured way to store and access elements of the same type, aiding in managing and

organizing data.

Example:

#include <stdio.h>

int main() {

 int numbers[5] = {10, 20, 30, 40, 50};

 char greeting[6] = "Hello";

 printf("Third number: %d\n", numbers[2]);

 printf("Greeting: %s", greeting);

 return 0;

}

In this example, we define an integer array numbers and a character array greeting. We then access

specific elements of the arrays and print them.

6. Pointers and Memory Management

Description: Pointers in C are variables that store memory addresses. They provide a powerful way to

manipulate memory and data, enabling functionalities like dynamic memory allocation and efficient

passing of large data structures to functions.

Understanding pointers is crucial for advanced memory management and efficient data handling. Pointers

facilitate direct access to memory addresses, allowing for optimizations and flexibility in data

manipulation.

Example:

#include <stdio.h>

int main() {

 int num = 10;

 int *ptr = # // Pointer storing the address of num

 printf("Value of num: %d\n", num);

 printf("Address of num: %p\n", (void*)&num);

 printf("Value at the address stored in ptr: %d", *ptr);

 return 0;

}In this example, we declare a pointer ptr that stores the address of the variable num. We then print the

value of num, the address of num, and the value at the address stored in ptr.

7. File Handling

Description: File handling in C involves reading from and writing to files. It's a crucial aspect for

programs that need to store or retrieve data from external sources.

Understanding file handling is essential for creating applications that deal with persistent data storage and

retrieval. Files are essential for long-term data storage, and file handling operations enable reading from

and writing to files.

Example:

#include <stdio.h>

int main() {

 FILE *file;

 char data[100] = "This is a sample text.";

 file = fopen("sample.txt", "w");

 if (file == NULL) {

 printf("Error opening file.");

 return 1;

 }

 fprintf(file, "%s", data);

 fclose(file);

 return 0;

}In this example, we write data to a file named "sample.txt".

8. Structures and Unions

Description: Structures and unions allow you to create custom data types in C by grouping different

types of data under a single name. Structures are collections of variables under one name, each called a

member. Unions, on the other hand, allow storing only one value out of all its members at a time.

Understanding structures and unions is fundamental for organizing complex data and creating custom

data types that efficiently represent real-world entities.

Example:

#include <stdio.h>

struct Point {

 int x;

 int y;

};

int main() {

 struct Point p1 = {5, 10};

 printf("Coordinates of Point: (%d, %d)", p1.x, p1.y);

 return 0;

}In this example, we define a structure Point with two integer members x and y. We then create a

variable of type Point and print its coordinates.

9. Dynamic Memory Allocation

Description: Dynamic memory allocation in C allows you to allocate memory during program execution.

It provides flexibility and is essential when the size of data is not known beforehand.

Understanding dynamic memory allocation is crucial for managing memory efficiently, especially for

variable-sized data structures.

Example:

#include <stdio.h>

#include <stdlib.h>

int main() {

 int *ptr;

 ptr = (int *)malloc(5 * sizeof(int));

 if (ptr == NULL) {

 printf("Memory allocation failed.");

 return 1;

 }

 for (int i = 0; i < 5; i++) {

 ptr[i] = i + 1;

 }

 printf("Dynamic Array: ");

 for (int i = 0; i < 5; i++) {

 printf("%d ", ptr[i]);

 }

 free(ptr);

 return 0;

}In this example, we dynamically allocate memory for an integer array of size 5.

10. Preprocessor Directives and Macros

Description: Preprocessor directives are commands that are executed before the compilation of the

program. They are used for various tasks such as including header files, defining macros, and

conditionally compiling code.

Understanding preprocessor directives and macros is essential for creating efficient and maintainable

code.

Example:

#include <stdio.h>

#define PI 3.14159

int main() {

 double radius = 5.0;

 double area = PI * radius * radius;

 printf("Area of the circle: %lf", area);

 return 0;

}

In this example, we define a macro PI and use it to calculate the area of a circle.

